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TRANSIENT RESPONSE OF
TWO FLUID-COUPLED SPHERICAL ELASTIC SHELLS -
TO AN INCIDENT PRESSURE PULSE

INTRODUCTION

An underwater weak shock wave sufficiently far away from its generating cxplosion’
source is often treated as an acoustic pulse. There is prolific literature on the studies of the:
trapsient interaction among such pressure waves and single elastic shells of simple shapes [1.2].5-
The results not only reveal many of the essential physical phenomena involved in the interac-
tion problem but also are quite useful for the verification of approximation metho :
predicting the underwater explosion response of submerged structures surrounded by an:e; ,
rior fluid medium of infinite extent {2-5]. In the present endeavor, the transient response of a' -
system of two fluid coupled concentric spherical eiastic shells impinged by an external incident .
plane shock wave is analyzed. This purports to gain physical insight in the response as well as &
to provide a data base for the development of general numerical methods for predicting the © -
underwater explosion response of fluid coupled shell systems such as the double hull section of
a submarine. The problem with the spherical geometry permits the separation of variables.in
the wave equation governing the fluid motion and the shell equations of motion. The f
Laplace transforms then facilitates the calculation of satisfactory transient solutlon gt
response of the shells.

A paper appears in the Russian literature [6] independently dealing with . » .
problem. The results obtained, however, only pertain to the point-symmetric ! . * n» .-
tional motions of the shells and these two terms of the series solution are insufficient for;
description of the complete shell response. It would also seem that the scheme of dual Volterra “
integral equations for the calculation of the inverse Laplace transform used in Ref. 6 is un- ~
necessarily complex and numerically inefficient. It can be readily shown that only a smgle and -
simpler integral equation is needed if this scheme is used.

In this report, a simple, straightforward method is devised for the inverse Laplace ..
transform, and the asymptotic behaviors of the shells are analytically discussed. An example "
calculation is also carried out using eight terms of the series solution for adequate convergefice
of shell displacements, velocities, and stresses. Time histories of the transient reponse of the
interior sheil are presented. This example demonstrates that a thin exterior shell !cnds o hc
transparent to the incident pulse.

Manuscript submitted December 16, 1977.
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Description of the Problem

Figure I sketches the fluid-coupled spherical shell system and the incident plane pressure
wave. The fluid surrounding the outer shelf and that between the two shells are considered ia
be ideal compressible fluids in linear wave motions and can be characterized by their unper-
turbed mass densities and sound speeds, t.e, by (% ¢} and {p, o, respectively. The shells are
initially concentric. In this study, the strength of the incident wave is sufficiently weak such
that the shell deflections are slastic and small and the deviation from the concentriciy remains
negligible for the time duration of interest. The mass densities, Young's moduli and Poisson’s
ratios of the outer and inner shells are (p7, £% v ¢) and (p,, E, v}, respectively. The middie
surface radii and thicknesses of the outer and inner shells are (2% 5°) and (g, A, respectively.
The @-coordinate of the spherical system (r, #, ®) is not shown in Fig. T since it is not needed
dueg to the symmetry of the problem. The origin O coincides with the unperturbed center of
the sheils.

INCIDENT PLANE WAVE

Fig. 1 — Geametry of the problem

The deflections of the inner shell in the r and f-direction, normatized with respect to the
outer shell radiug #% are denoted by w and u respectively and those of the outer shell by w®
and 1 respectively. The total prassure field exierior to the outer shell is denoted by p® {1, 8, §
and that between the shells by p(r, 8, ©) where ¢ designates time. The following dimensionless
parameters will be used in the mathematical formulation:

R = ra® T =c%a®{ =ala®n =c, {1 —¢),
¢, = c%c,p, =plo® M =p%/(p ), M* = p a{plh®),
3 =!@%ﬂﬂﬂe—ﬁbﬁﬁﬂi=i—w)2F=§%Wfﬂ

? = ﬂbgi—uuﬁﬁ}cz—sﬁb(i—»ﬂ@ﬂ%

ag = af =ug =uf =0,y =2CL A§ =202,

a, = (1 + DCmim + 1) - Q -y)yu + o),

ab = {1 -i—IQ)Ce[m{m +1y — 0 —»514 + 29,

X = CH2 + I+ (m? 4+ m + DmGm +1) — 0 — )Y + 0},
A= CH2F U+ i+ m + DHmGn + 1) - (0 — w9V A + 29,
By = Cm? +m =D =p + Imlm +1) = 4 —2)1 x

fmlm + 1Y — (0 + 23] —o)}i/ 1 ~— )
pl= CHm? +m —2M1 —vf + Imlm +1) — (1 —»,}x
fmlm + 1) — Q@ + v )WY 0Q —v )Y@ —»,)
1533
m = 1,2,3,..
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11 ¢ and I1 satisfy the wave equations

vZHE =Q_2IL"
972
and
9 211
v =l ——
arT

respectively, where V2 is the Laplacian operator. The boundary conditions of the prob1¢
that I1¢ satisfies the radiation condition at far field and that

oI B¢ 9w
e 9 o =1
3R @8R a2 4R
and
e 82w at R =¢
R Pr LY '

All quantities except the incident pressure fizld have quiescent initial conditions.

A Laplace transform pair is defined as

oa

wo,s) = [ w, De T
[4]

w(d, T} =—— w(o, s)eTds
i Ry
where v lies to the right of all singularities of Win the complex s-plane and / = ( —-1) 1;12‘;‘! pe

Due to the spherical geometry of the problem, the solutions cdn be expanded 1n t
series of Legendre polynomials as the following.

MN{R,6, T) = i I, (R, T)P, (cos 8)

m
m =0

I¢(R, 0, T} = i g (R, TP, (cos 6)

m
=0

o0

w@, T) = 3 w, (1P, (cos 8)

m "
ni =0

we(g, T) = i wi (T)P,, (cos #)

m =0

dP 0
u(@, T) = ): u, (T )*i(ioi—)
m =1
o aP, (cos €
@, 7) = 3 u,f,(r)—’i'%—»—)
m =]

where P, is the Legendre polynominal of the first kind and mth degrée.
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In the Laplace transform domain, the equations of motion of the elastic shells are {7]
—MUH, L 5Y %5 + ay,)

g4 + A, L% o,
~MEIIE (L, sy — 11, (L, sy 2 + af)

n 17 L

] e

”.‘H

wE =

i s+ }gf‘,’fsz +ul
m=0,172, .. 8
(€2S2 + am}f‘—’:m ={62 + 1 ‘!;" I &ml gm
- e —
(s2 + af VS =[C§ + T aj,l W,
m=1,273 .. 9

it should be noted that the solution method developed here is applicable for any linear elastie
theory for the spherical shells. The choice of the version in Egs. (8} and (9} is for the compati-
son of results previousty obtained in Ref, 7.

The total pressure field exterior to the outer sheit T1 ¢ consists of the pressure due to the
incident wave and those due to scatiering and radiation by the outer shell. An arbitrary in-
cident plane pressure wave impinging the vertex of the outet shell (R =1,8 =@y at T =&
can be expressed by the following series {7}

(R, 8,5) = f{s)e ¢ E 2m + 1)i, (Rs)P, (cos@), ao

m =0

where f{s} is the Laplace transform of the time characteristics of the incident wave and
i, (Rs} is the abbreviated notation for the modified spherical Bessel function of the first kind
iﬂ'/! (zks)illlfm +1/2 {RS} fﬁ}-

Sclutiens in the Laplace Transform Domain
It can be shown that the solutions to the system of Egs. (2) through (10} are:

e (R s) = @m +1) i‘”—f;— i, (RsVk. (s) — k,, (Rs)i., ()]
swek,, (Rs)
- ‘m— {11}
ps
¢, {f,; (cris}k;" {c,8) — i;ﬁ (crs}kf;? (c,Ls)}
% {{wek,, (c,is) — Wk, (c,5) 1, (c,Rs)
— (Wi, {cLs) — Wi (c,5) 1k, (e,Rs)} (t2)

l—_i?h‘ (R’ S} =
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__e=_(2m~+—1) e S er 2 e 4 4 A 22+
m A, (s) 952 SGIMEG® + a )@ +0,0% »u'm)

%k (e300 (e85 = iy (e25)ky (e,9)) + o, M &2 (252 + 4,

x [i.';r (Crs)km (crgs) - ‘im (Cfgs)kf;l (Crs) ]} .
= _ _OOm+1 me—s T erp2.2 2 4 g
= Am (5) 23‘2 f(S) 2(‘3§S P,MM (€ s ozm) (s am.)

r

In the above equations k,, (s) is the abbreviated notation for the modified spherica

function of the third kind, [#/2s] 1/2Km+1/2 (s). The prime denotes differentiation of the
Bessel functions with respect to their arguments, and

Am (s) =1 454 4+ Al 22 + Ju'm) [kr;z (Cl‘s)fl;’.' (C,CS) - kf;‘l (cri;s)i,;, (C,S-).l:j :

Ls
+pMC

r
r

@352+ @) liy (690, (6,85) = Ky (€,8)iy (e )1

X ki (5) (s* + A 5s2 + w) — Mésk,, (5) (s +afl)]

" "
P '
- C_r MPS(SZ + a:l) (§4S4 + )\mg 232 + ’u'"i')km (S)
r
X Ly (e ls)iy (c,8) = i, (e,8)k,y (c,5)]

+

2
%J MM (s? + a8y (52 + o))k, (5)
X [il;f (C."S)km (Crgs) - if;.! (Crgs)km (Crs) ]

With use of the Tauber’s theorem of Laplace transforms [9], some of the 'ésymptotlc

behaviors of the shell responses at late time can readily be revealed from Egs. (13) and (14). -
Specifically, for the case where the incident wave I1° is a unit step wave, ie., f(s) = 1/s

~2C%2 (1 — (3IMe + 3¢3p MM® .
Wi (D) =~ 3 32 2 '
T— oo 4C°Coe (0 —17) + 6p,MLC? + 6p,MeC
and
—3¢p, MM?3
W (1) = ——— 3 :
T-=  4CCef (1 —¢3) + 6p, ML3CE + 6p,MeC?

These shell deflections occur long after the incident wave has engulfed the outer shel
also be found by static analysis.

Again, for the unit step incidence case,
W (T) =
T—oo
=3IML(+2¢2)p M+6(1 —¢3)] n
6p,M (1 +20°) +6M1(1 —£3) + 2 +13)p, 1 +p, MM°]1 +2034+2p, (1 ~£3) 1 +36 1

~¢?)
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and
T— o0
—9p MM*
6o, MU +203) +6Me[(1 —£3) + @+, 4o, MM +203 +2p, 00 —£2)} 43640 —¢ 1)

(1%

where the dot denotes differentiation with respect to 7, These ate late time transiational veloci-
ties of the shells in the direction of propagation of the incident wave. & can be seen that the
only condition under which w, = wf at late time is p M =3, ie, when the inner shell is
neutrally buoyant in the interior fluid, Otherwise, they are net equal to each other. Therefore,
when interpreting the results of the present problem for large values of T, the reiative posi-
tions of the shell must also be examined. If, at some time, the deviation from concentricity be.
comes excessive, the results of analysis thereafter are no longer physically meaningful.

Formuiae (16) through (19) are convenient for parametric studies of the effects of vari-
ous shell properties and fluid properties on the symmetric and translational responses of the
shells, and they are also quite useful for providing asymptotic checks for the numerical caleufa-
tions.

The Inversion of the Transfermed Solutions
The spherical Bessel functions can be expressed in finite series of elementary functions

{8]. If this property is used, the transformed solutions, eg., Eq. {14}, can be rearranged in the
following form:

_— r,{s’
S ]
" e — B, (e @
where
Fpls) = =2(=1}"*1Qm + 13, /e ) (SIMM ) " * Hes) 2 H2(s2 + a2} (¢ 252 + )

Ay () =X, )X, (—¢) 5* +afs? +p8) + M%2(? + o) Y, ()X, { —c,5)
— 0, ¥, (=X, (B, (45 @4 +1,8%52 +p, )
+ 0, M2 + @, ) Y, (e, L)
B, (s} ={X, ()X, €c,s) (s* + NEs2 + &) + MSH(? + af) Y, ()X, (6,8
= 0,V (e )X, X, (—c L) @%* + 2,052 + u,)
+ p M 252(g 252 + o, Y, (—cis)}

m+1 i
X {s) =% (m+372, %52 Km¥ti—F T (m + 1/2, k)2 “Hemk
k=5 k=0
Y, (s} = 3 (m+1/2, k)2 ~*sm &
k=
_ _fm + &M
Un + 172, %) = === = @t

6
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Both A4, and B,, are (3m + 11)¢h order real polynomials of s and, for the plane incidé ‘ce‘:;;, ‘
case, [, isa (3m + 6)th order real polynomial. e

Equations of the form of Eq. (20) appear in many applied problems such as wave propa-
gation in layered media, transmission lines, etc. The exponential factors in the denominator
signify the reflections of waves, in the present case, to and from R = and R =1. Thf;--di- :
mensionless time for a disturbance to traverse the distance (1 — ¢) is . There is a variety of
schemes for calculating the inverse Laplace transform of Egq. {20). One of the standardized
technigues is the D’Alembert expansion [10} by which Eq. {20) can be rewritten as -

—ns 2 3 S
W, (s) = L (e B e s 4 ﬁ e ~hs 4 ﬁ"_] e —ns 4 7,
4,,(s) A, N -
n
+ _B_m. e -Zn'rps + . ]
Am
n=12173

Since A4, is a real polynomial of s, its roots can be accurately computed by well-established ﬁr_m_-
merical procedures and the inversion of every individual term on the right-hand side of Eq.
(22) can then be obtained by the method of residue. The calculation of residues, however,
would be rather clumsy for terms with A4,, of high power. The following scheme utilizing the -
convolution theorem is devised to circumvent this. From Eq. (22), :

Wy (T) = wl (T —m)H(T — %) + wh (T =39) + wi(T —59)H(T —5
+ oo+ wWHT = @n + DylHIC = Qn + g] + -+ :

where H is the Heaviside step function and

T
wh(D) =wd(D) — [ G, (T — )% (+)ar,
[1]

T
wl(T) =wl(T) - f G, (T —7)w) (v)dr,
0

T
wa (1) = w11 = [ G, (T —r)w! L (r)dr.
0

In Eq (24), w(T) and G,(T) are the inverse transforms of’ T, (s)/4,,(
(4, (s) — B, (s)1/4,, (s) respectively. They are to be first accurately obtained by the method @ .
of residue. This is quite practical with the current computing technology for up to moderate
values of m. For large m asymptotic expansions for the spherical Bessel functions can be used
and 4, and B, will assume simpler forms. For the calculations of shell responses in .the
present problem, large m terms are not needed. The successive convolutions required in-Eq. -
{24) can be conveniently programmed and carried out in a modern digital computer. Since ‘
w,?,(T) and G, (T) are composed of terms formed by an exponential multiplied by a tri- "~
gonometrical function, Trauboth’s fast convolution integration algorithm [11], which only re- -
quiries about the same number of computation steps as for ordinary integration, is used here.
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It can be seen from Eqs. (23) and (24) that each successive integration advances the solution
time by 2% and the number of successive integrations required depends on 7 and 7. The con-
trot of numerical accuracy lies in finding the zeros of 4,, and the subsequent numerical in-
tegrations, and both are weit established numerical techniques. Other quantities such as w?, (7}
can be found by the same procedure or calculated from their relationships with Wi

Equation {20} can also be transformed into the following Volterra integral equation:
T
Wy (T} — w (T —n)H{(T —n) + f G, (yw, (T —2q —7)YH(T —2qy — 1)
0

= wl (T —m)H(T —n). 25)

On close examination, however, the solution of Eq. {25} requires repeating exacily the same
convolutions as in Bq. (24). Therefore it is quite unnecessary to use the numericat techniques
of integral equations, even if only one single integral equation is involved, for obtaining the in-
verse Laplace transform of Eq. (20). On the contrary, the use of two simultaneous Veltersa in-
tegral equations for obtaining the inverse Laplace transforms of w,, and w:, as in Ref. 6 waould
have unduly increased the numerical difficulty and the computation effort.

Results and Discussions

Numerical resuits are obtained for a case in which both shells are made of steel and both
fluids are water. The material properties and dimensions used are such that

¢, =p, =1, C€* =C? =17.79133
Me =3209875, M = 641975
k¢a® =1/250, Ha = 1/50
{ =08, n =02. 26}

The incidence is a step wave with f{s) = 1/s. The transient responses of the shels are caleu-
lated for four transit times of the incident wavefront, ie., T =0 to & For this duration of time,
it requires twenty successive convolution integrations in Eq. (24). The parabolic rule is used for
the numerical integration in conjunction with Trauboth’s fast convolution scheme. Since nu-
merical roundoff and truncation errors accumulate at each successive integration, the integra-
tion intervals Ar are kept sufficiently small to minimize these errors. The roots of 4, {s), and
from these, w2 (T), and G, (T}, are evaluated with high accuracy before starting the cenvelu-
tion integration. It is alse found that, similar to the case of a single shell [7], eight terms
{m =0 — 7y in the series solution are sufficient for the representstions of the shell
deflections, velocities, and stresses. The integration intervals used are: A+ =001 for wy and
wy, Ar = 0.0025 for wy, and A7 = 0.00125 for the higher terms. If the solution must be car-
ried out for shorter time duration, say up to T = 4, a much coarser Ar will suffice.

In all subsequent figures, the present solutions are ploted in dotted lines and compared to
the solutions obtained by the method of Ref. 7 and plotted in solid lines for the case in which
the guter shell is absent.

Figure 2 shows the results for the wy’s and w,’s. Similar to the single-shell case, the
present results approach their respective asymptotic values after about two transit times, and
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'O-ZL . I | T
W, .
_ X — 155070 ]
— -1.43599
:"'-__ 0.1 —
# - Wyt — 018082 |02
=
ganneen wEme B 4 & & % B % % ¥ gc"-ﬁ
—-0.14085 |
0 I | 1 ] o
0 2 4 B 8 10
T'=(T—nli

Fig. 2 — Time histories of wg and w,

the numerical asymptotes of w, and W, agree with formulae (17) and (19) respectively
three digits. These results are indicative of the accuracy of the present solution cor
scheme. For this particular example, the outer shell is rather thin and its effect on the response
of the inner shell is observable in the wy, wy, and w, terms. Its effect on the higher modes of .
the inner shell, ie., w, with m > 2, is quite undiscernible. Sample results for higher W,'S are -
exhibited in Fig. 3. It can be seen there that the present results for w; and w, coalesce -with
the respective resuits for the outer shell absent case. The same can be said about ws, wg, and
w,, and they are not replotted here. E

V6T T T T T T T '

04 ]
_ 02F /
i;# ol ]
2

0.2
04
0.6
E
-0.4
-0.2

ALY

ll_r\\‘l{l{l

> <
>
NI

0.2
04
-0.2

R W A N A N \i

54,
T[\\‘l!l
A

w,(T)

0.2

I SR .

1] 2 4 [ B 10
T = (T—m}t

Fig. 3 ~ Time histories of wy, wq, and w,
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Eight terms of w,'s are summed in Eq (7} for representing the total response of the
inner shell. Figure 4 plots the time history of the relative radial deflection between the two
apexes of the inner shell, The presence of the outer shell causes a downward shift of the eurve
representing the present resuit. This is due to the diminished w, term.

Figure 5 shows the time histories of the radial velocities of the same tweo apexes. The
presence of the outer shell causes a slight reduction of the velocities with little alteration of
their profiles, Again this can also be expected by observing the slight reduction of the w, term.

0.8 N S NE— BT T F F T ¥ ¥ T ¥
0.6 —
§ o
= . -
B 02 — i‘;
H $
o .
=3
x
a2l o -
04l . -
1 1 | i [ R N N SN SN SR S
Q 2 4 [ 8 10 a z 4 ] 12 16 L3
T {T—lif T ={T—niit
Fig. 4 - Relative radial deflection beiween the Fig. 5 — Time histeries of radial velocities at the
apexes of ihe inner shell apexes of the inner shell

It is reiterated here that the series solution in the form of Eq. (7} is not effective for ob-
taining the early time acceleration and pressure if the incident wave has a steep front. The cus-
tomary remedy is to apply a modified Watson’s transform to Eqs. {11} through (14} and calcu-
tate the asvmptotic results for large s [11 This is, however, much more complex than the singie
shell case studied in Ref. 12, and is outside the scope of the present report,

The polar membrane stress {force per unit fength) N, and the hoop membrane stress Ny,
are caiculated by

e Bu
Ny, = O+ )0 0 +viw + I + pucot &} {21
and
_ aC? g
Ny, STy —vy ({1 +viw +» 50 + weot @1, €28}
10
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The time histories of the polar and/or hoop stress at # = w/2 and at § = = a 'in
Fig. 6 and 7 respectively. The shielding of the outer shell reduces the stresses slightly. The
mean stresses also decrease in proportion to wy. The maximum stresses occur after Lne 'nudcnl
wave has completely engulfed the outer shell and are about twice the correspopgdil [

values.

. —
% @
.
z
1 | I | | l J -
0 2 4 6 8 10 o} 2 4 [
T = (T =g T = (T-q
Fig. 6 — Time histories of the polar stress at Fig. 7 — Time histories of the polar and hoop:
=72 stresses at @ = 77

All results of the present example infer that a thin outer shell tends to be trans
the incident pulse.

In conclusion, it can be said that an accurate solution method for this problem ha;
developed and can be used for parametric studies.- Moreover, a set of numerica]‘re
been meticulously obtained to serve as a data base for the development of numericat
for the analysis of the transient response of double hulls of practical conﬁguration's'
mediate scheme is to apply the currently available Doubly Asymptotic Techmque[Z]
outer fluid field and the fluid finite element technique for the entrained fluid. ‘
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